skip to main content


Search for: All records

Creators/Authors contains: "Wiseman, Toby"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We introduce new methods to numerically construct for the first time stationary axisymmetric black hole solutions in Einstein-aether theory and study their properties. The key technical challenge is to impose regularity at the spin-2, 1, and 0 wave mode horizons. Interestingly we find the metric horizon, and various wave mode horizons, are not Killing horizons, having null generators to which no linear combination of Killing vectors is tangent, and which spiral from pole to equator or vice versa. Existing phenomenological constraints result in two regions of coupling parameters where the theory is viable and some couplings are large; region I with a large twist coupling and region II with also a (somewhat) large expansion coupling. Currently these constraints do not include tests from strong field dynamics, such as observations of black holes and their mergers. Given the large aether coupling(s) one might expect such dynamics to deviate significantly from general relativity (GR), and hence to further constrain the theory. Here we argue this is not the case, since for these parameter regions solutions exist where the aether is ‘painted’ onto a metric background that is very close to that of GR. This painting for region I is approximately independent of the large twist coupling, and for region II is also approximately independent of the large expansion coupling and normal to a maximal foliation of the spacetime. We support this picture analytically for weak fields, and numerically for rotating black hole solutions, which closely approximate the Kerr metric. 
    more » « less
  2. Abstract The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas. 
    more » « less